Elmomc Multi-Axis Motion Controller-Maestro Motion Contro Instrukcja Użytkownika

Przeglądaj online lub pobierz Instrukcja Użytkownika dla Sprzęt komputerowy Elmomc Multi-Axis Motion Controller-Maestro Motion Contro. ElmoMC Multi-Axis Motion Controller-Maestro Motion Control User Manual Instrukcja obsługi

  • Pobierz
  • Dodaj do moich podręczników
  • Drukuj

Podsumowanie treści

Strona 1 - Motion Control

Motion Control Library Tutorial January 2007 (Ver. 1.0)

Strona 2

Maestro Motion Library Tutorial MAN-INTUG (Ver. 1.7) 7

Strona 3 - Contents

For this operator to work properly, the first line of the PVT table containing a text header must be removed. plot3(posX,posY,posZ) axis square; grid

Strona 4 - 1.2 Vector properties

Figure 1-5: Projection on the XZ plane Example (Motion Mathematic Lib Samples\ Vector_3D \ Helix – www.elmomc.com)

Strona 5 - ΔT = 0.5(vxt + vnt)

Maestro Motion Library Tutorial MAN-INTUG (Ver. 1.7) 10 Yc = Y - R*sin(Teta) // X coordinate of the helix axis v2.splines()

Strona 6 - 1.3.3 Spline

Inside the polyline operator parenthesis vector_name.starts(trj_name) and vector_name.ends() can be added function calls – addline(), addcircle(), add

Strona 7

3. vsc = 2 – ML builds switch arc with the switch radius vsr (this parameter must be set by the user). 4. vsc = 3 - ML builds a swit

Strona 8 - a = 100000

Maestro Motion Library Tutorial MAN-INTUG (Ver. 1.7) 13

Strona 9

Maestro Motion Library Tutorial MAN-INTUG (Ver. 1.7) 14 Figure 1-8: Recording of

Strona 10 - MAN-INTUG (Ver. 1.7)

Maestro Motion Library Tutorial MAN-INTUG (Ver. 1.7) 15 Figure 1-9: Three-dimensional polygon drawn in

Strona 11

Maestro Motion Library Tutorial MAN-INTUG (Ver. 1.7) 16 Figure 1-11: Pr

Strona 12

Notice This tutorial is delivered subject to the following conditions and restrictions:  This tutorial contains proprietary information belongi

Strona 13 - 1.3.4 Polyline

In fact, the value defined as r ≥ (vse) 2/(vae*vac ) (by default vae = 0.9) must be used in the calculations. 2. Implicitly pre-defined by the us

Strona 14

Input parameters and intersection geometry define the influence of a switch arc on a trajectory. The main cases of shapes intersection are considered

Strona 15

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-1 Chapter 2: Switch Radius Calculation 2.1 Line – line intersection If a traje

Strona 16

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-2 vsr ≤ min(0.5ΔL1, 0.5ΔL2)*tg(γ/2)

Strona 17 -

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-3 r_max = dmax*tg(γ/2) = 50000* tg(0.5*0.1974) = 4951 This value is limiting a

Strona 18

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-4 vse = [r_switch*vac*vae]1/2 = [4455.9*500000*0.9]1/2 = 44778.9 Example 2.1c

Strona 19

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-5 Line 1 is defined by its init point (300000, 900000) and end point (700000,2

Strona 20

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-6 2.2 Circle – line intersection Note: C – circle arc, L – line, R – circle

Strona 21

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-7 Figure 2-2 Example 2-2 (Motion Mathematic L

Strona 22 - MAN-MLT (Ver 2.0)

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-8 Yp = Yc + K*(Xp – Xc) = 0 +0.7*(-46979 - 0) = -32885 And the perpendicular l

Strona 23

Contents Chapter 1: General Description ...11.1 Introduct

Strona 24

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-9 The length of the perpendicular h should also be calculated. By knowing the

Strona 25

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-10 Figure 2-4 In our calculations was not taken in account add

Strona 26

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-11 r = ρ1ρ2/(ρ1 + ρ2)

Strona 27

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-12 ρ1= 100000 - |C/B| = 100000 - |(-3464101600.0)/(-90000)| = 61509.98222

Strona 28

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-13 Figure 2-7 This condition is not always sufficient. Adequacy depends on a

Strona 29

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-14 Figure 2-8 Example 2-9 (Motion Mathematic Lib Samples\Circle to Line\ Se

Strona 30

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-15 Figure 2-9 Projection of the circle arc init point P1 on the line L does

Strona 31

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-16 Figure 2-10 Example 2-11 (Motion Mat

Strona 32

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-17 2.2.1.3 Line intersects the center of the circle Consider the last case of

Strona 33 - r = ρ

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-18 Figure 2-13 Example 2-14 (Motion Mathematic Lib Samples\Circle to Line\ S

Strona 34 - ) and an

Chapter 1: General Description 1.1 Introduction The Motion Library (ML) produces trajectories based on the PVT mechanism. It implements a set of fun

Strona 35

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-19 c) The circle arc sweeps an angle less than 90o and a perpendicular droppe

Strona 36

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-20 By (a1.6) we have Xp = (Yo – Y1 + kX1 – qXo)/(k – q) = (–80000 + 56569 – 5

Strona 37

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-21 ρ[(Xp,Yp),(X1,Y1)] = r

Strona 38

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-22

Strona 39 - β = 135

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-23 that produces r = [R2 – (ρ1)2 – (ρ3)2]/(2R + 2ρ1)

Strona 40

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-24 2.2.2.3 Circle center (Xc,Yc) Є L1 (line L1 intersects the center of the c

Strona 41 - 2-16

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-25 1. Circle init radius intersects with the line L continued in its positive

Strona 42

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-26 or rd = hd – hR – hr

Strona 43

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-27 Figure 2-24 2.2.3.2 Line parallel to the circle arc init radius a) Li

Strona 44 - 2-19

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-28 Figure 2-25b Maximum switch radius is perpendicular to the line L at the

Strona 45

general trajectory time (vtt) switch arc definitions (vsc, vsr, vsd) admissible velocity and position errors definitions (vpe,vve) PVT step low and hi

Strona 46

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-29 3. Know trajectory init point P2(X2,Y2), calculate ρ2 = ρ(p2, p1) = [(X2

Strona 47 - . The length of h

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-30 By (a3.6)-(a3.7) from Appendix 3. q1 = ΔX1/ΔY1= (34641-0)/(20000-0) = 1.732

Strona 48

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-31 2.3.1 One of two circle arcs intersects the internal area of the second If

Strona 49 - (2.2.3.2-1)

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-32 (Xo – Xc2)2 + (Yo – Yc2)2 = (R2 – r)2

Strona 50 - Example 2-27

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-33 (C1)2 + (C2)2 – 1 = [(X2 – X1)/d]2 + [(Y2 – Y1)/d]2 – 1 = d2/d2 – 1 = 0

Strona 51

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-34 (rC1 + C3)2 + (rC2 + C4)2 = (R2 – r)2

Strona 52 - Figure 2-28

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-35 (X2 + 65000)2 + (– 35000)2 = 1000002 that produces X2 = -158675. d = |X2 –

Strona 53

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-36 From (2.3.1-27) Figure 2-31 XoR1 – X1R1 = r(Xc1 – X1)

Strona 54

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-37 r2 C12 + (2C1C3)r + C32 + r2C22 + (2C2C4)r + C42 = r2 + (2R2)r + R22

Strona 55

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-38 Substituting into (4.1-32) (X2 + C1r – Xc1)2 + (Y2 + C2r – Yc1)2 =

Strona 56

1.3 Trajectory generation 1.3.1 Line Target position for a line is defined by the parameters of the function line(): Two-dimensional line V1.line(x,y)

Strona 57

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-39 2.3.2 Each circle intersects the internal area of the second Figure 2-33 sh

Strona 58

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-40 This system is similar to (2.3.2-2) – (2.3.2-4) and comes to the same solut

Strona 59

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-41 C1 = (X1 – Xc2)/R2 = -0.866025 C2 = (Y1 – Yc2)/R2

Strona 60

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-42 This system is similar to (4.2) – (4.4) and comes to the same solution r =

Strona 61

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-43 Consider the case that the sweep angle of the first circle is β1 < 90 an

Strona 62

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-44 r2C5 + rC6 + C7 = 0

Strona 63

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-45 So for r, the results are: r = –C7/C6

Strona 64

Appendix A: Projection of a point on a line defined by the end points The line L is defined by its end points P1(X1,Y1) and P2(X2,Y2). Drop a perpendi

Strona 65

Y is from (a1.4). Coordinates (X,Y) of the intersection point line L and perpendicular are coordinates of projection point (Xp,Yp). Having got a proje

Strona 66

Appendix B: Coefficients of the line standard equation for the line defined by the end points If the line L is defined by its end points (X1,Y1) and

Strona 67 - Maestro Software Manual

Other popular types of splines like Bezier curves, B- splines or NURBS are usually not interpolation but smoothing splines. The spline curve does

Strona 68 - MAN-MLT(Ver. 2.0)

Appendix C: Intersection point of two lines defined by the end points Line L1 is defined by its end points P1(X1,Y1) and P2(X2,Y2). Line L2 is defined

Strona 69

or (X3 – X1)/∆X1 = (Y – Y1)/∆Y1 (a3.10) and f

Strona 70

Appendix D: Circle – line intersection points The line is defined by its end points (X1,Y1) and (X2,Y2). The circle is defined by its radius R and c

Strona 71 - MAN-MLT (Ver. 2.0)

1.3.3.1 Examples for the two-dimensional spline interpolation Example Example (Motion Mathematic Lib Samples\ Vector_2D \ Spline_Ellipse – www.elmomc.

Strona 72

Maestro Motion Library Tutorial MAN-INTUG (Ver. 1.7) 6 for t = 0:pi/72:2*pi x = R*cos(3*t) y = R*sin(5*t) v1.splinep(x,y) // add spline po

Komentarze do niniejszej Instrukcji

Brak uwag